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Trapping and survival probability in two dimensions
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We investigate the survival probabilityF(n,c) of particles performing a random walk on a two-dimensional
lattice that contains static traps, which are randomly distributed with a concentrationc, as a function of the
number of stepsn. F(n,c) is analyzed in terms of a scaling ansatz, which allows us to locate quantitatively the
crossover between the Rosenstock approximation~valid only at early times! and the asymptotic Donsker-
Varadhan behavior~valid only at long times!. While the existence of the crossover has been postulated before,
its exact location has not been known. Our scaling hypothesis is based on the mean value of the quantitySn ,
the number of sites visited in ann-step walk. We make use of the idea of self-interacting random walks, and
a ‘‘slithering’’ snake algorithm, available in the literature, and we are thus able to obtain accurate survival
probability data indirectly by Monte Carlo simulation techniques. The crossover can now be determined by our
method, and it is found to depend on a combination ofc and n. It occurs at smallF(n,c) values, which is
typically the case for large values ofn.

DOI: 10.1103/PhysRevE.63.021104 PACS number~s!: 05.40.Fb, 72.10.2d
os

iva
he
le
n
th

n
m

viv

th
ce

s

ith
-
u

he
lt

th
l
k
ta
t
u

he

s

y
-

fu-
ter-

s

the

isor-
er-
s a
i-

on

een
s

a
r-

ar-
een
The trapping problem continues to be one of the m
puzzling problems of transport in disordered systems@1–16#.
The problem is the precise characterization of the surv
probability of a particle that performs a random walk in t
presence of randomly distributed static traps. This prob
acquires its complications from the interplay of two differe
random events: the random distribution of traps leads to
formation of large trap-free regions@7#. Additionally, there is
a finite set of random walks within these regions. We co
sider here the lattice version of the trapping problem. Co
mon sense suggests an exponential decay of the sur
probability with the number of steps~time!, except perhaps
in one dimension. The simplest approximate treatment of
problem~Rosenstock@8#! yields an exponential dependen
on time~number of stepsn) in dimensionsd>3, and expo-
nential dependence onAn in d51. There exists a rigorou
treatment of the problem by Donsker and Varadhan@1#; their
result is an exponential decay of the survival probability w
an argument proportional tond/(d12). Hence, simple expo
nential decay would appear only in infinite dimensions, b
in all finite dimensions the result would be different from t
Rosenstock approximation. The Donsker-Varadhan resu
an asymptotic one, valid only in the limitn→`. No direct
simulations of the trapping problem have ever shown
asymptotic Donsker-Varadhan behavior@5#, whereas at smal
concentrations of traps and step numbers the Rosenstoc
proximation seems to be applicable. Hence the impor
question arises as to the nature of the crossover from
Rosenstock approximation to the rigorous asymptotic res
This is specifically the goal of the present article.

As will be detailed below, a satisfactory description of t
crossover between the small-n behavior and the casen→`
exists ind51 @6#. Also, in d53 a satisfactory picture ha
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emerged@14#. In this paper we will study the notoriousl
difficult case ofd52 by making a scaling analysis. We em
phasize that the two-dimensional case is important for dif
sion processes on surfaces, which are of great current in
est.

We consider hypercubic lattices in arbitrary dimensiond
~linear, square, simple cubic, etc.! where a finite fraction of
sites, designated as trap sites, is randomly distributed on
lattice. The concentration of the trap sites shall bec. The trap
sites are considered as static, i.e., we have quenched d
der. A particle is placed randomly on the lattice and it p
forms a regular random walk. When the particle reache
trap site it gets absorbed by it irreversibly, i.e. it is annih
lated. The survival probabilityF(n,c) is the probability that
a particle has not been trapped~i.e., it survives! after a ran-
dom walk ofn steps, on a lattice containing a concentrati
c of such traps.

The first step in deriving the survival probabilityF(n,c)
can be made by a very simple consideration, which has b
known for a long time. It utilizes the number of distinct site
visited at least once in ann-step random walk,Sn . For a
concentrationc of traps (0,c,1), each lattice site has
probability 12c of not being a trap. If a particle has su
vived in a random walk ofn steps, then none of theSn sites
visited can be a trap site. This event has the probability

Pn5~12c!Sn. ~1!

Thus, the survival probability is exactly

F~n,c!5^~12c!Sn&5^e2lSn&, ~2!

where l52 ln(12c). The remaining average in Eq.~2! is
over different realizations of the random walks of the p
ticle; the average over the trap distributions has already b
performed.
©2001 The American Physical Society04-1
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Clearly, to solve this problem it suffices to have the co
plete distributionpn(S) of the values ofSn in different
walks. Thus Eq.~2! can be written in the form

F~n,c!5(
S

pn~S!~12c!S. ~3!

This distribution is known only in one dimension@3#, but not
in two or three dimensions. A first approximation, propos
by Rosenstock@8#, consists in replacing the quantitySn in
Eq. ~2! by its mean valuêSn&,

F~n,c!5^~12c!Sn&.~12c!^Sn&. ~4!

The average valueŝSn& are known accurately for all dimen
sionalities, and for anyn @17,21#. However, it turns out tha
Eq. ~4! is not in satisfactory agreement with precise simu
tion data, as it applies only to low trap concentrations a
early times.

The Rosenstock approximation can be improved by us
the cumulant generating function@9#

K~l,n!5(
j 51

`

~21! j
l j

j !
kj~n!, ~5!

wherekj (n) are the so-called cumulants. The survival pro
ability can then be written as

F~n,c!5exp@K~l,n!#. ~6!

In practice, the upper index has to be truncated from` to a
value in the rangej 52 –4. This formula yields better result
but it requires the momentŝSn

j &, which also are not known
analytically.

Actually, Donsker and Varadhan@1# have proved an exac
result forF(n,c), which is valid for all dimensionalities, bu
its validity is restricted to the long-time limit. The surviva
probability is rigorously given as

lim
n→`

F~n,c!5exp~2Kdl2/(21d)nd/(d12)!, ~7!

whered is the dimensionality andKd is a positive constan
depending on the dimensionality and the structure of the
tice. Notice that Eq.~7! is a limiting expression forn→`,
and no information is given on when this limit is reached

The asymptotic behavior of the survival probability c
be derived from qualitative, Flory-type, arguments that w
developed by Grassberger and Procaccia@7#. We will not
reproduce the argument here, except for the remark tha
behavior results from the combination of the distribution
trap-free regions and of random walks that are restricted
these regions. Also, Nieuwenhuizen@16# studied analytically
the behavior ofF in three-dimensional lattices. He was ab
to estimate crossover times for small trap concentratio
which verified the numerical results of Ref.@14#. The cross-
over times reported in@16# are very large as derived by
renormalization theory analysis.

The rigorous result of Donsker and Varadhan is in app
ent contradiction to the Rosenstock approximation for
02110
-

d

-
d

g

-

t-

e

he
f
to

s,

r-
e

survival probability. For instance, in one dimension Donsk
and Varadhan predict an argument in the exponent;n1/3

while the Rosenstock approximation gives;n1/2; in d53
the arguments of the exponent behave as;n3/5 and ;n,
respectively. How can the two results be tied together? T
problem can be treated more or less completely ind51,
where sufficiently complete information on the distributio
pn(S) of the distinct sites visited is available@3#.

Using the asymptotic expression forpn(S), Anlauf @6#
derived an asymptotic expansion of the survival probabil
which is in excellent agreement with the simulations. W
reproduce the form given in Ref.@19# ~in this reference an
extension with regard to a correlated walk was made; h
we restrict the formula to an uncorrelated walk!,

F~n,c!5
c2

~12c!l2
8S 2

3D 1/2S x

p D 3/2

3expF2
3x

2
1

a1

x
1

a2

x2
1•••G . ~8!

The scaling variable isx5(pl)2/3n1/3 and the coefficienta1
is given by

a15
p2l2

12
. ~9!

The next coefficient can be found in@19#.
In d53 the crossover between the Rosenstock appr

mation and the asymptotic limit described by the Donsk
Varadhan result was studied in terms of a scaling analysis
Anlauf @14#. The details of this analysis will be describe
below, where it will be extended to the more complicat
case ofd52.

The two-dimensional case is difficult for a theoretical d
scription, because the random walk represents the marg
case of recurrent behavior. This is reflected in the prese
of logarithmic terms in the mean number^Sn& of distinct
sites visited@17,21#, which lead to difficulties in the scaling
analysis.

In order to study the crossover between the Rosens
approximation and the asymptotic Donsker-Varadhan beh
ior, we perform a scaling analysis ofF(n,c), in a similar
way to that done by Anlauf ind53. The starting point is the
notion of a self-interacting random walk~SIW!, which was
first introduced by Stanleyet al. @15#. The method was fur-
ther elaborated by Meirovitch@20#. In a SIW every random
walk that visitsS sites has a total statistical weighte2lS,
wherel is a parameter representing a form of dimensionl
energy. Thus, we can construct the partition function as

Z5 (
all walks

e2lS. ~10!

The mean valuêS&SIW in the case of a SIW is given by

^S&SIW5
1

Z (
all walks

Se2lS52
] ln Z

]l
. ~11!
4-2
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TRAPPING AND SURVIVAL PROBABILITY IN TWO . . . PHYSICAL REVIEW E63 021104
The SIW takes place on a trap-free lattice. However, if
interpretl as2 ln(12c) we can correlate the SIW with th
random walk on a lattice with traps of concentrationc. We
then observe that the survival probability can be written

F~n,c!5
1

~2d!n
Z, ~12!

and thus

2 ln F~n,c!5n ln 2d2 ln Z. ~13!

If we integrate Eq.~11! with respect tol we get

E
0

l

^S&SIWdl852E
0

l

d ln Z

52 ln Zul85l1 ln Zul850

52 ln Z1 ln (
all walks

e20S52 ln Z1 ln~2d!n.

~14!

The final part of this equation is exactly the same as the r
part of Eq.~13!, so by substituting in~13! we have our final
result,

2 ln F~n,c!5E
0

l

^S&SIWdl8, ~15!

wherel52 ln(12c). This formula relates the survival prob
ability to the mean number of sites visited during a SIW
This is a very important step, since we need to compute o
an average value for different values ofl and not a distribu-
tion in complete detail, as needed in direct Monte Ca
simulations of trapping.

In order to overcome attrition problems with the nume
cal calculation of̂ S&SIW we implement a ‘‘slithering snake’
algorithm @18#. First, we fix the number of stepsn, and we
create a normaln-step random walk starting from a give
point ~‘‘tail’’ ! and resulting in the ‘‘head’’ site. This chai
~or snake!, comprised ofn bonds connectingn11 sites not
necessarily different, starts moving and transforming
shape. The head picks a random neighboring position
decides whether it will move there. If the move is accep
the rest of the chain moves along the original chain, leav
the old tail site vacant. The decision to accept the new c
figuration is based onDS, which measures the difference
sites occupied by the chain before and after the move of
head. The possible values ofDS are 21, 0, 1. A move is
always accepted whenDS,1. If DS51, which means tha
the chain will grow longer, the move is accepted with
probability p5e2lDS5e2l512c, wherec is the fixed trap
concentration for this walk. When the move is not accepte
has been shown@14,18# that the chain should simply chang
its direction of moving by interchanging the labels of he
and tail. We repeat the same procedure and monitor the n
ber of sites occupied by the chain for uncorrelated confi
rations. Thus, after acquiring many values ofS, we can de-
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termine^S&SIW for a given value ofc. All we have to do now
in order to computeF(n,c) is to repeat the entire algorithm
for different values ofc and integrate the resulting curv
according to Eq.~15!.

A scaling analysis can be performed as follows. We kn
that in the small-n limit the Rosenstock approximation i
quite accurate, while in the large-n limit the Donsker-
Varadhan result is valid. Thus, a scaling form ofF(n,c)
should tend to the following limit behaviors:

2 ln F~n,c!;H l^Sn&, small n

kdl2/(d12)nd/(d12), n→`.
~16!

For d51 or d53 ^Sn& follows a power law and it is rela-
tively easy to perform a scaling ansatz of the form

2 ln F~n,c!5na f ~lnb!, ~17!

but for d52 the logarithmic denominator in the formula fo
^Sn& makes such an approach impossible. However, one
try to fit ^Sn& in d52 in the early-time regime also with
power law, since we are not really interested in the ex
form of ^Sn&, but rather in its general behavior in this re
gime. For this fit, we use the formula for^Sn& given by
Henyey and Seshadri@21#, which gives a very accurate rep
resentation of̂ Sn& in d52 over an extended region ofn.
The result of the fit iŝSn&;0.72n0.9 and the quality of the fit
is satisfactory, as shown in Fig. 1, at least for the purpose
this work. If we assume this form of^Sn& to be applicable for
the scaling analysis, we finda50.10 andb50.80. This re-
sults in

2
ln F

n0.1
5 f ~ln0.8!5 f ~x!;H Ax, x→0

kdx1/2, x→`,
~18!

wherex5ln0.8 is the scaling variable. By combining Eq
~11!, ~13!, and~18! we get

^S&SIW52
] ln Z

]l
5n0.9f 8~ln0.8!, ~19!

FIG. 1. Fitting of the^Sn& data derived from the Henyey an
Seshadri paper@21# ~symbols! to a power law~solid line!.
4-3
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where

^S&SIW

n0.9
5 f 8~x!;H A, x→0

kd

2
x21/2, x→`.

~20!

This formula means that if we plot̂S&SIW/n0.9, as derived
by the simulations, as a function ofln0.8, we expect to ob-
serve initially a constant value and, after a crossover regi
a power law with slope20.5. This will also be a strong
indication that the asymptotic limit has been reached.

In Fig. 2 we present this plot for different numbers
steps and different trap concentrations. We can see tha
deed the behavior is as expected, thus verifying the propo
assumptions.

We can transform Eq.~15! according to our scaling vari
ables,

2 ln F~n,c!5n0.1E
0

x^S&SIW

n0.9
dx. ~21!

The crossover pointxc can be found by the intersection o
the two lines in Fig. 2. The result isxc.8.76 and the integra
can be separated into two parts (x<xc andx.xc). We use
Eq. ~20! to get

2 ln F~n,c!

n0.1
5H Ax, x<xc

Axc1kd~x1/22xc
1/2!, x.xc .

~22!

This two-part function is also represented in Fig. 2, wh
the solid circles are the result of the numerical integration
the open circles in the same figure. In Fig. 3 we present
numerically calculated effective exponent ofx in Eq. ~18!,

FIG. 2. Double logarithmic plot of̂ S&SIW /n0.9 ~left ordinate
axis! and 2 ln F(n,c)/n0.1 ~right ordinate axis! as a function of the
scaling variablex. The open circles are the results of simulatio
using the slithering snake algorithm for different trap concentrati
ranging fromc50.005 toc50.9. The two dashed lines are the on
predicted by Eq.~20!, while the solid lines are those of Eq.~22!.
The filled circles are the result of numerically integrating the op
circles.
02110
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which is the slope of our data in Fig. 2. We observe that
slope initially has a value around 1, while asymptotically
tends to the value 0.5. Although this asymptotic value h
not been exactly achieved, the slope atx51000 is very close
to 0.5. Therefore, we can claim that the Donsker-Varadh
limit is reached for valuesxDV.1000 or higher.

Figure 3 should be compared to Fig. 2~a! of Ref. @5#. In
this figure, we can see that the local slope initially reduc
toward the value 0.5. However, it is soon masked by
exponential term, finally yielding a slope of 1, although
larger systems smaller values of the local exponent
reached. Our method, though, is not really influenced by
nite size problems and thus the local slope exponent in Fi
is monotonically decreasing, allowing us to directly loca
the onset of the Donsker-Varadhan regime. It is also in
esting to note that whenc50.5 the number of steps corre
sponding to the valuexDV51000 that we derived in ou
work is roughly 9000, which is in quite good agreement w
the value acquired if we extrapolate the data of Fig. 2~a! in
Ref. @5#.

Summarizing, in this paper we have investigated the tr
ping problem ind52. It is well known, and we also dis
cussed in detail, that the theoretical treatment for the cas
dimensionalityd52 is more demanding than in other dime
sions, because this is the borderline dimension for recur
random walks. For instance, the mean number of dist
sites visited by a random walk ofn steps,^Sn&, contains
logarithmic terms.

To obtain insight into the crossover between the Ros
stock approximation, which is valid for short times and sm
trap concentrations, and the asymptotic Donsker-Varad
behavior, we made a scaling analysis of the behavior of
survival probability in the complete time-concentration d
main. The method of analysis was based on the meth
introduced by Anlauf for the cased53 @14#. Such an analy-
sis is particularly difficult ind52 because of the presence
logarithmic terms in the quantitŷSn&, which enters the
Rosenstock approximation. We circumvented the problem

s

n

FIG. 3. Local exponent ofx in Eq. ~18!, as a function ofx
5ln0.8, derived numerically from the points in Fig. 2.
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the logarithmic terms by fittinĝSn& to a power law over a
rather large interval ofn. Although this procedure is partially
heuristic, a scaling form ofF(n,c) was obtained. This scal
ing form could then be used to determine the crossover
tween the Rosenstock approximation and the asympt
Donsker-Varadhan expression. As expected, the cross
occurs at values of step numbers and concentrations w
the survival probability is already very small. We have su
ceeeded in exploring the survival probability ind52 into the
asymptotic Donsker-Varadhan regime by relating it to a s
interacting walk. This method proves quite powerful, since
does not suffer from finite size effects, and it is valid in
p

alk

r,
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very wide time regime and a wide range of trap concen
tions, all in the most general way. We believe that the dir
determination of the survival probability ind52, either by
simulations or by experiments, is extremely difficult, if n
impossible@5#. Alternatively, the direct analytical determina
tion of the complete distribution ofSn seems also a very
difficult task. Only indirect methods such as the present o
can succeed in this complex problem.
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