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Trapping and survival probability in two dimensions
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We investigate the survival probabilith (n,c) of particles performing a random walk on a two-dimensional
lattice that contains static traps, which are randomly distributed with a concenteatiana function of the
number of stepa. ®(n,c) is analyzed in terms of a scaling ansatz, which allows us to locate quantitatively the
crossover between the Rosenstock approximati@iid only at early timesand the asymptotic Donsker-
Varadhan behaviaivalid only at long times While the existence of the crossover has been postulated before,
its exact location has not been known. Our scaling hypothesis is based on the mean value of theSQjuantity
the number of sites visited in amstep walk. We make use of the idea of self-interacting random walks, and
a “slithering” snake algorithm, available in the literature, and we are thus able to obtain accurate survival
probability data indirectly by Monte Carlo simulation techniques. The crossover can now be determined by our
method, and it is found to depend on a combinatiort @hdn. It occurs at smaltb(n,c) values, which is
typically the case for large values of
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The trapping problem continues to be one of the mosemerged[14]. In this paper we will study the notoriously
puzzling problems of transport in disordered systgirsl6]. difficult case ofd=2 by making a scaling analysis. We em-
The problem is the precise characterization of the survivaphasize that the two-dimensional case is important for diffu-
probability of a particle that performs a random walk in the sion processes on surfaces, which are of great current inter-
presence of randomly distributed static traps. This problenest.
acquires its complications from the interplay of two different We consider hypercubic lattices in arbitrary dimensidns
random events: the random distribution of traps leads to théinear, square, simple cubic, etevhere a finite fraction of
formation of large trap-free regiofg]. Additionally, there is  sites, designated as trap sites, is randomly distributed on the
a finite set of random walks within these regions. We conAattice. The concentration of the trap sites shaltb&he trap
sider here the lattice version of the trapping problem. Comsites are considered as static, i.e., we have quenched disor-
mon sense suggests an exponential decay of the survivekr. A particle is placed randomly on the lattice and it per-
probability with the number of stepsime), except perhaps forms a regular random walk. When the particle reaches a
in one dimension. The simplest approximate treatment of thérap site it gets absorbed by it irreversibly, i.e. it is annihi-
problem (RosenstocK8]) yields an exponential dependence lated. The survival probabilityp (n,c) is the probability that
on time (number of step®) in dimensiongd=3, and expo- a particle has not been trappéc., it survive$ after a ran-
nential dependence ot in d=1. There exists a rigorous dom walk ofn steps, on a lattice containing a concentration
treatment of the problem by Donsker and Varadfidntheir ¢ of such traps.
result is an exponential decay of the survival probability with ~ The first step in deriving the survival probabilidy(n,c)
an argument proportional to(@*2) Hence, simple expo- can be made by a very simple consideration, which has been
nential decay would appear only in infinite dimensions, butknown for a long time. It utilizes the number of distinct sites
in all finite dimensions the result would be different from the visited at least once in an-step random walkS,. For a
Rosenstock approximation. The Donsker-Varadhan result isoncentrationc of traps (0<c<1), each lattice site has a
an asymptotic one, valid only in the limit—o. No direct  probability 1—c of not being a trap. If a particle has sur-
simulations of the trapping problem have ever shown thevived in a random walk oh steps, then none of tH#, sites
asymptotic Donsker-Varadhan beha\jibt, whereas at small visited can be a trap site. This event has the probability
concentrations of traps and step numbers the Rosenstock ap-
proximation seems to be applicable. Hence the important P,=(1—c)5. (1)
guestion arises as to the nature of the crossover from the
Rosenstock approximation to the rigorous asymptotic resulfThus, the survival probability is exactly
This is specifically the goal of the present article.

As will be detailed below, a satisfactory description of the d(n,c)={((1—c)>)=(e %), (2
crossover between the smallbehavior and the case— «
exists ind=1 [6]. Also, ind=3 a satisfactory picture has where A = —In(1—c). The remaining average in Eq) is

over different realizations of the random walks of the par-
ticle; the average over the trap distributions has already been
*Deceased. performed.
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Clearly, to solve this problem it suffices to have the com-survival probability. For instance, in one dimension Donsker
plete distributionp,(S) of the values ofS, in different and Varadhan predict an argument in the exponent’®

walks. Thus Eq(2) can be written in the form while the Rosenstock approximation given? in d=3
the arguments of the exponent behave-~as®® and ~n,

® _ 1—c)S. respectively. How can the two results be tied together? This
(n.¢) Es: Pr(S)(1=c) @ problem can be treated more or less completelydil,

where sufficiently complete information on the distribution
This distribution is known only in one dimensi¢8], but not  p,(S) of the distinct sites visited is availabf8].
in two or three dimensigns..A first approximation, 'pro'posed Using the asymptotic expression for,(S), Anlauf [6]
by Rosenstock8], consists in replacing the quanti§y, in derived an asymptotic expansion of the survival probability,

Eqg. (2) by its mean valuds,), which is in excellent agreement with the simulations. We
s, (s reproduce the form given in Ref19] (in this reference an
P(n,c)=((1-c)™=(1-c)™". (4)  extension with regard to a correlated walk was made; here

. we restrict the formula to an uncorrelated walk
The average valugss,) are known accurately for all dimen- wa

sionalities, and for any [17,21]. However, it turns out that 2 2\ 12/ | 312
Eq. (4) is not in satisfactory agreement with precise simula- d(n,c)= —8(—) (_
tion data, as it applies only to low trap concentrations and (1-c)\? 13 77
early times.
The Rosenstock approximation can be improved by using xex;{ _ % " ﬂ+ az n %)
the cumulant generating functigf] 2 X ¥

- Y The scaling variable ig=(7\)?*n® and the coefficiena,
K(x,m:gl (1) sk, (5 s given by
wherek;(n) are the so-called cumulants. The survival prob- a = m\? 9)
ability can then be written as 1712
®(n,c)=exd K(\,n)]. (6)  The next coefficient can be found [f9].

In d=3 the crossover between the Rosenstock approxi-
In practice, the upper index has to be truncated frotd @ mation and the asymptotic limit described by the Donsker-
value in the rangg¢=2-4. This formula yields better results, varadhan result was studied in terms of a scaling analysis by
but it requires the momentss}), which also are not known Anlauf [14]. The details of this analysis will be described
analytically. below, where it will be extended to the more complicated

Actually, Donsker and Varadhdi] have proved an exact case ofd=2.

result for®d(n,c), which is valid for all dimensionalities, but The two-dimensional case is difficult for a theoretical de-
its validity is restricted to the long-time limit. The survival scription, because the random walk represents the marginal

probability is rigorously given as case of recurrent behavior. This is reflected in the presence
of logarithmic terms in the mean numbég,) of distinct
; _ /(2+d) yd/(d _ - _ e/ :
lim ®(n,c) =exp( — K\ Ind/dr2)), (") sites visited 17,21, which lead to difficulties in the scaling
n—oo H
analysis.

In order to study the crossover between the Rosenstock

whered is the dimensionality ané is a positive constant L .
depending on the dimensionality and the structure of the |at§1pprOX|mat|on and the asymptotic Donsker-Varadhan behav-

tice. Notice that Eq(7) is a limiting expression fon— o, lor, we Eerfgrm 1S?Iilngf§3i|?i§rf(n’c).’ in a.Sim"ar:
and no information is given on when this limit is reached. waty to tfat Oﬂe. ty ntgu : _d - 'ne stellrtlng pr?.ln; Is the
The asymptotic behavior of the survival probability can notion of a self-interacting random wa(IW), which was

be derived from qualitative, Flory-type, arguments that WereIirSt introduced by Sta_nlegt al.[15]. The method was fur-
developed by G?assberger andyP>;gca¢d%a We will not  ther elaborated by Meirovitcf20]. In a SIW every random

reproduce the argument here, except for the remark that th‘@alk tha_t visits S sites has a tOt"_"I statistical W.e'ghfx.s’
behavior results from the combination of the distribution Ofwhere)\ IS a parameter representing a fo_rm . d|m§n3|onless
trap-free regions and of random walks that are restricted t§M€r9Y- Thus, we can construct the partition function as
these regions. Also, NieuwenhuizEl6] studied analytically
the behavior ofb in three-dimensional lattices. He was able 7= 2 e S (10)
to estimate crossover times for small trap concentrations, all walks
which verified the numerical results of R¢L4]. The cross- ] o
over times reported ifil6] are very large as derived by a The mean valugS)sy in the case of a SIW is given by
renormalization theory analysis.

The rigorous result of Donsker and Varadhan is in appar- <S>SIW:£ > e \S=
ent contradiction to the Rosenstock approximation for the z

JdinZ

11
all'walks N (1
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The SIW takes place on a trap-free lattice. However, if we
interpreth as —In(1—c) we can correlate the SIW with the
random walk on a lattice with traps of concentrat@nVe
then observe that the survival probability can be written as

10000

®d(n,c)=

2
(zd)nz’ (1 ) <5,>

and thus

—In®d(n,c)=nIn2d-InZ. (13

If we integrate Eq(11) with respect ton we get

1 " ) "
10 100 1000 10000 100000

A A
f <s>3|wdx’=—f dinz "
0 0 FIG. 1. Fitting of the(S,) data derived from the Henyey and
——InZ|, -, +InZ|y o Seshadri papd21] (symbols to a power law(solid line).

_ termine(S) gy for a given value ot. All we have to do now
- _ 0S_ _ n SIwW
=—Inz+ lna”%“(s € InZ+In(2d)™ in order to computeb(n,c) is to repeat the entire algorithm
for different values ofc and integrate the resulting curve
(14) according to Eq(15).
The final part of this equation is exactly the same as the righ A scaling analysis can be performed as follows. We know

R, . tthat in the small limit the Rosenstock approximation is
E:;tjl?f Eq.(13), so by substituting iri13) we have our final quite accurate, while in the large-limit the Donsker-
' Varadhan result is valid. Thus, a scaling form &{n,c)
A should tend to the following limit behaviors:
—In@(n,c>=f (S)smd\’, (15
0 NSy, small n

—In®d(n,c)~ (16)
where\ = —In(1—c). This formula relates the survival prob- kgh /(@2 Y(@72) - n oo,

ability to the mean number of sites visited during a SIW.
This is a very important step, since we need to compute onl
an average value for different values)find not a distribu-
ti_on in _complete de_tail, as needed in direct Monte Carlo “Ind(n,c)=n“f(Anb), (17)
simulations of trapping.

In order to overcome attrition problems with the numeri-
cal calculation of S)sy we implement a “slithering snake”
algorithm[18]. First, we fix the number of stepg and we
create a normah-step random walk starting from a given

Ford=1 ord=3 (S,) follows a power law and it is rela-
ively easy to perform a scaling ansatz of the form

but for d=2 the logarithmic denominator in the formula for
(S,) makes such an approach impossible. However, one can
try to fit (S,) in d=2 in the early-time regime also with a
power law, since we are not really interested in the exact

point (“tkail” ) anq re;ul;ri]né:] indthe “head.” site.l This chain ¢, of (Sy), but rather in its general behavior in this re-
(or snakg, comprised ofh bonds connecting + 1 sites not gime. For this fit, we use the formula fqS,) given by

necessarily different, starts moving and transforming it hadi?1]. which ai i
shape. The head picks a random neighboring position ar}enyey and Seshadzl], which gives a very accurate rep

! L ! sentation ofS,) in d=2 over an extended region of
decides whether it will move there. If th? MOVe IS ACCePIelryq ragit of the fit i€S,)~0.7n%%and the quality of the fit
tEe “Tgt Ofl the chain movre]s glong the original ck;laln, Ieavmqs satisfactory, as shown in Fig. 1, at least for the purpose of
the old tail site vacant. The decision to accept the new cong_. ' . - .
figuration is based oA'S, which measures the difference innfhIS work. If we assume this form ¢8,) to be applicable for

sites occupied by the chain before and after the move of thgljelt;?s“ng analysis, we find=0.10 ands=0.80. This re-
head. The possible values AfS are —1, 0, 1. A move is
always accepted whehS<1. If AS=1, which means that I

- ! . . nd Ax, x—0
the chain will grow longer, the move is accepted with a — ——=f(AN®B)=f(x)~ 2 (18)
probabilityp=e " **S=e"*=1-c, wherec is the fixed trap 01 k X— 00
concentration for this walk. When the move is not accepted it
has been showfi4,18 that the chain should simply change Wherex=X\n°? is the scaling variable. By combining Egs.
its direction of moving by interchanging the labels of head(11), (13), and(18) we get
and tail. We repeat the same procedure and monitor the num-
ber of sites occupied by the chain for uncorrelated configu-
rations. Thus, after acquiring many valuesS$fwe can de-

dinzZ
(S)sw=— N n%%’(xn9), (19
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FIG. 2. Double logarithmic plot of S)g,/n°° (left ordinate x=An

axis) and —In ®(n,c)/n°? (right ordinate axisas a function of the FIG. 3. Local exponent ok in Eq. (18), as a function ofx
scaling variablex. The open circles are the results of simulations _ 108 yerived numerically from the points in Fig. 2.
using the slithering snake algorithm for different trap concentrations

ranging fromc=0.005 toc=0.9. The two dashed lines are the ones \yhich js the slope of our data in Fig. 2. We observe that the
predicted by Eq(20), while the solid lines are those of E(2).  gjgpe jnitially has a value around 1, while asymptotically it
T_he filled circles are the result of numerically integrating the OPeNiands to the value 0.5. Although this asymptotic value has
circles. not been exactly achieved, the slopeat1000 is very close
to 0.5. Therefore, we can claim that the Donsker-Varadhan
limit is reached for valuegp,,=1000 or higher.
A, x—0 Figure 3 should be compared to FigaRof Ref.[5]. In
(Ssw ., this figure, we can see that the local slope initially reduces
n09 =f'(x)~ ﬁ —1/2 (20) toward the value 0.5. However, it is soon masked by the
2 ’ ' exponential term, finally yielding a slope of 1, although in
i , 09 ) larger systems smaller values of the local exponent are
This formula means that if we pIdlS)OSéW/n , as derived  rgached. Our method, though, is not really influenced by fi-
by the simulations, as a function ah™", we expect to ob- pjte size problems and thus the local slope exponent in Fig. 3
serve initially a constant value and, after a crossover regimgs monotonically decreasing, allowing us to directly locate
a power law with slope-0.5. This will also be a strong {he onset of the Donsker-Varadhan regime. It is also inter-
indication that the asymptotic limit has been reached. esting to note that wheo=0.5 the number of steps corre-
In Fig. 2 we present this plot for different numbers of sponding to the valueg,=1000 that we derived in our
steps and different trap concentrations. We can see that ifyqk is roughly 9000, which is in quite good agreement with
deed the behavior is as expected, thus verifying the proposgfle yajue acquired if we extrapolate the data of Fig) 2

where

assumptions. Ref. [5].
blwe can transform Eq15) according to our scaling vari-  symmarizing, in this paper we have investigated the trap-
ables,

ping problem ind=2. It is well known, and we also dis-
X(S) cussed in detall, that the theoretical treatment for the case of
—In®(n,c)=n1 ASIW (21)  dimensionalityd=2 is more demanding than in other dimen-

0 sions, because this is the borderline dimension for recurrent
random walks. For instance, the mean number of distinct
The crossover poink; can be found by the intersection of gjtes visited by a random walk of steps,(S,), contains
the two lines in Fig. 2. The result 1s.=8.76 and the integral logarithmic terms.
can be separated into two parts{x. andx>x.). We use To obtain insight into the crossover between the Rosen-
Eq. (20) to get stock approximation, which is valid for short times and small
trap concentrations, and the asymptotic Donsker-Varadhan
22) behavior, we made a scaling analysis of the behavior of the
Ax.+ kqy(x22— x}:’z), X>Xe . survival probability in the complete time-concentration do-

main. The method of analysis was based on the methods
This two-part function is also represented in Fig. 2, whereintroduced by Anlauf for the cas= 3 [14]. Such an analy-
the solid circles are the result of the numerical integration ofis is particularly difficult ind=2 because of the presence of
the open circles in the same figure. In Fig. 3 we present théogarithmic terms in the quantityS,), which enters the
numerically calculated effective exponent xfn Eqg. (18), Rosenstock approximation. We circumvented the problem of

n0.9

—In®(n,c)
no-1 a

AX, X=X,
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the logarithmic terms by fittingS,,) to a power law over a very wide time regime and a wide range of trap concentra-
rather large interval afi. Although this procedure is partially tions, all in the most general way. We believe that the direct
heuristic, a scaling form of(n,c) was obtained. This scal- determination of the survival probability id=2, either by

ing form could then be used to determine the crossover besimulations or by experiments, is extremely difficult, if not
tween the Rosenstock approximation and the asymptotitnpossible[5]. Alternatively, the direct analytical determina-
Donsker-Varadhan expression. As expected, the crossovéPn of the complete distribution o, seems also a very
occurs at values of step numbers and concentrations wheflifficult task. iny.md|rect methods such as the present one
the survival probability is already very small. We have suc-can succeed in this complex problem.

ceeeded in exploring the survival probabilityde- 2 into the We thank Professor J. Anlauf for several discussions. We
asymptotic Donsker-Varadhan regime by relating it to a self-also thank the University of Paderboi@ermany Computer
interacting walk. This method proves quite powerful, since itCenter for a computing grant used to carry out part of the
does not suffer from finite size effects, and it is valid in acalculations.
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